680 research outputs found

    Minimum-time control for structurally persistent continuous Petri nets and the application in distributed Control

    Get PDF
    In this report, we first address the minimum-time control problem of structurally persistent timed continuous Petri Net systems (ContPN). In particular, an ON-OFF controller is proposed to drive the system from a given initial marking to the final marking in minimum-time. The controller is developed first for the discrete-time system ensuring that all transitions are fired as fast as possible in each sampling period until the required total firing counts are reached. After that, they are stopped suddenly. By taking the limit of the sampling period, the controller for continuous-time systems is obtained. Simplicity and the fact that it ensures minimum-time are the main advantages of the controller. A manufacturing system is taken as case study to illustrate the control strategy. In a distributed controlled system, normally a complex dynamic system, the controllers are not centralized in one location, but are distributed in subsystems. We try to apply the ON-OFF controller into the distributed control of large scale systems modeled with timed continuous Petri net. The original net system is first structurally decompose into smaller subnets through sets of places. Then the ON-OFF controller is applied in controlling each subsystem. Algorithms are proposed to compute admissible control laws for the local subsystems in a distributed way. It is proved that with that control laws, the final state can be reached in minimum time

    Performance Bounds for Synchronized Queueing Networks

    Get PDF
    Las redes de Petri estocásticas constituyen un modelo unificado de las diferentes extensiones de redes de colas con sincronizaciones existentes en la literatura, válido para el diseño y análisis de prestaciones de sistemas informáticos distribuidos. En este trabajo se proponen técnicas de cálculo de cotas superiores e inferiores de las prestaciones de redes de Petri estocásticas en estado estacionario. Las cotas obtenidas son calculables en tiempo polinómico en el tamaño del modelo, por medio de la resolución de ciertos problemas de programación lineal definidos a partir de la matriz de incidencia de la red (en este sentido, las técnicas desarrolladas pueden considerarse estructurales). Las cotas calculadas dependen sólamente de los valores medios de las variables aleatorias que describen la temporización del sistema, y son independientes de los momentos de mayor orden. Esta independencia de la forma de las distribuciones de probabilidad asociadas puede considerarse como una útil generalización de otros resultados existentes para distribuciones particulares, puesto que los momentos de orden superior son, habitualmente, desconocidos en la realidad y difíciles de estimar. Finalmente, las técnicas desarrolladas se aplican al análisis de diferentes ejemplos tomados de la literatura sobre sistemas informáticos distribuidos y sistemas de fabricación. ******* Product form queueing networks have long been used for the performance evaluation of computer systems. Their success has been due to their capability of naturally expressing sharing of resources and queueing, that are typical situations of traditional computer systems, as well as to their efficient solution algorithms, of polynomial complexity on the size of the model. Unfortunately, the introduction of synchronization constraints usually destroys the product form solution, so that general concurrent and distributed systems are not easily studied with this class of models. Petri nets have been proved specially adequate to model parallel and distributed systems. Moreover, they have a well-founded theory of analysis that allows to investigate a great number of qualitative properties of the system. In the original definition, Petri nets did not include the notion of time, and tried to model only the logical behaviour of systems by describing the causal relations existing among events. This approach showed its power in the specification and analysis of concurrent systems in a way independent of the concept of time. Nevertheless the introduction of a timing specification is essential if we want to use this class of models for the performance evaluation of distributed systems. One of the main problems in the actual use of timed and stochastic Petri net models for the quantitative evaluation of large systems is the explosion of the computational complexity of the analysis algorithms. In general, exact performance results are obtained from the numerical solution of a continuous time Markov chain, whose dimension is given by the size of the state space of the model. Structural computation of exact performance measures has been possible for some subclasses of nets such as those with state machine topology. These nets, under certain assumptions on the stochastic interpretation are isomorphic to Gordon and Newell's networks, in queueing theory terminology. In the general case, efficient methods for the derivation of performance measures are still needed. Two complementary approaches to the derivation of exact measures for the analysis of distributed systems are the utilization of approximation techniques and the computation of bounds. Approximate values for the performance parameters are in general more efficiently derived than the exact ones. On the other hand, "exactness" only exists in theory! In other words, numerical algorithms must be applied in practice for the computation of exact values, therefore making errors is inevitable. Performance bounds are useful in the preliminary phases of the design of a system, in which many parameters are not known accurately. Several alternatives for those parameters should be quickly evaluated, and rejected those that are clearly bad. Exact (and even approximate) solutions would be computationally very expensive. Bounds become useful in these instances since they usually require much less computation effort. The computation of upper and lower bounds for the steady-state performance of timed and stochastic Petri nets is considered in this work. In particular, we study the throughput of transitions, defined as the average number of firings per time unit. For this measure we try to compute upper and lower bounds in polynomial time on the size of the net model, by means of proper linear programming problems defined from the incidence matrix of the net (in this sense, we develop structural techniques). These bounds depend only on the mean values and not on the higher moments of the probability distribution functions of the random variables that describe the timing of the system. The independence of the probability distributions can be viewed as a useful generalization of the performance results, since higher moments of the delays are usually unknown for real cases, and difficult to estimate and assess. From a different perspective, the obtained results can be applied to the analysis of queueing networks extended with some synchronization schemes. Monoclass queueing networks can be mapped on stochastic Petri nets. On the other hand, stochastic Petri nets can be interpreted as monoclass queueing networks augmented with synchronization primitives. Concerning the presentation of this manuscript, it should be mentioned that chapter 1 has been written with the object of giving the reader an outline of the stochastic Petri net model: its definition, terminology, basic properties, and related concepts, together with its deep relation with other classic stochastic network models. Chapter 2 is devoted to the presentation of the net subclasses considered in the rest of the work. The classification presented here is quite different from the one which is usual in the framework of Petri nets. The reason lies on the fact that our classification criterion, the computability of visit ratios for transitions, is introduced for the first time in the field of stochastic Petri nets in this work. The significance of that criterion is based on the important role that the visit ratios play in the computation of upper and lower bounds for the performance of the models. Nevertheless, classical important net subclasses are identified here in terms of the computability of their visit ratios from different parameters of the model. Chapter 3 is concerned with the computation of reachable upper and lower bounds for the most restrictive subclass of those presented in chapter 2: marked graphs. The explanation of this fact is easy to understand. The more simple is the model the more accessible will be the techniques an ideas for the development of good results. Chapter 4 provides a generalization for live and bounded free choice nets of the results presented in the previous chapter. Quality of obtained bounds is similar to that for strongly connected marked graphs: throughput lower bounds are reachable for bounded nets while upper bounds are reachable for 1-bounded nets. Chapter 5 considers the extension to other net subclasses, like mono-T-semiflow nets, FRT-nets, totally open deterministic systems of sequential processes, and persistent nets. The results are of diverse colours. For mono-T-semiflow nets and, therefore, for general FRT-nets, it is not possible (so far) to obtain reachable throughput bounds. On the other hand, for bounded ordinary persistent nets, tight throughput upper bounds are derived. Moreover, in the case of totally open deterministic systems of sequential processes the exact steady-state performance measures can be computed in polynomial time on the net size. In chapter 6 bounds for other interesting performance measures are derived from throughput bounds and from classical queueing theory laws. After that, we explore the introduction of more information from the probability distribution functions of service times in order to improve the bounds. In particular, for Coxian service delay of transitions it is possible to improve the throughput upper bounds of previous chapters which held for more general forms of distribution functions. This improvement shows to be specially fruitful for live and bounded free choice nets. Chapter 7 is devoted to case studies. Several examples taken from literature in the fields of distributed computing systems and manufacturing systems are modelled by means of stochastic Petri nets and evaluated using the techniques developed in previous chapters. Finally, some concluding remarks and considerations on possible extensions of the work are presented

    On Minimum-time Control of Continuous Petri nets: Centralized and Decentralized Perspectives

    Get PDF
    Muchos sistemas artificiales, como los sistemas de manufactura, de logística, de telecomunicaciones o de tráfico, pueden ser vistos "de manera natural" como Sistemas Dinámicos de Eventos Discretos (DEDS). Desafortunadamente, cuando tienen grandes poblaciones, estos sistemas pueden sufrir del clásico problema de la explosión de estados. Con la intención de evitar este problema, se pueden aplicar técnicas de fluidificación, obteniendo una relajación fluida del modelo original discreto. Las redes de Petri continuas (CPNs) son una aproximación fluida de las redes de Petri discretas, un conocido formalismo para los DEDS. Una ventaja clave del empleo de las CPNs es que, a menudo, llevan a una substancial reducción del coste computacional. Esta tesis se centra en el control de Redes de Petri continuas temporizadas (TCPNs), donde las transiciones tienen una interpretación temporal asociada. Se asume que los sistemas siguen una semántica de servidores infinitos (velocidad variable) y que las acciones de control aplicables son la disminución de la velocidad del disparo de las transiciones. Se consideran dos interesantes problemas de control en esta tesis: 1) control del marcado objetivo, donde el objetivo es conducir el sistema (tan rápido como sea posible) desde un estado inicial a un estado final deseado, y es similar al problema de control set-point para cualquier sistema de estado continuo; 2) control del flujo óptimo, donde el objetivo es conducir el sistema a un flujo óptimo sin conocimiento a priori del estado final. En particular, estamos interesados en alcanzar el flujo máximo tan rápido como sea posible, lo cual suele ser deseable en la mayoría de sistemas prácticos. El problema de control del marcado objetivo se considera desde las perspectivas centralizada y descentralizada. Proponemos varios controladores centralizados en tiempo mínimo, y todos ellos están basados en una estrategia ON/OFF. Para algunas subclases, como las redes Choice-Free (CF), se garantiza la evolución en tiempo mínimo; mientras que para redes generales, los controladores propuestos son heurísticos. Respecto del problema de control descentralizado, proponemos en primer lugar un controlador descentralizado en tiempo mínimo para redes CF. Para redes generales, proponemos una aproximación distribuida del método Model Predictive Control (MPC); sin embargo en este método no se considera evolución en tiempo mínimo. El problema de control de flujo óptimo (en nuestro caso, flujo máximo) en tiempo mínimo se considera para redes CF. Proponemos un algoritmo heurístico en el que calculamos los "mejores" firing count vectors que llevan al sistema al flujo máximo, y aplicamos una estrategia de disparo ON/OFF. También demostramos que, debido a que las redes CF son persistentes, podemos reducir el tiempo que tarda en alcanzar el flujo máximo con algunos disparos adicionales. Los métodos de control propuestos se han implementado e integrado en una herramienta para Redes de Petri híbridas basada en Matlab, llamada SimHPN

    Methods and Formal Models for Healthcare Systems Management

    Get PDF
    A healthcare system is an organization of people, institutions, and resources that deliver healthcare services to meet the health needs of target populations. The size of the systems, the huge number of agents involved and their different expectations make the management of healthcare systems a tough task which could be alleviated through the use of technology. In this thesis, new methods and formal models for healthcare system management are presented. Particularly, the thesis is divided in two main parts: the first one has to do with the modeling and analysis in hospitals by the use of clinical pathways while the second one deals with the planning and scheduling of patients in the operation rooms.Regarding the modeling and analysis of healthcare systems, depending on different visions and expectations, the system can be treated from different perspectives called facets. In chapter 2, the formal definition and characterization of two facets are given: (1) facet of resource management and (2) handshake between clinical pathways facet. They are obtained by applying to Stochastic Well-formed Nets (colored Petri Nets) modeling the healthcare system a set of relaxations, abstraction and modifications. In the first facet the subclass of S4PR is obtained which is a characteristic model of the resource allocation systems while in the second facet Deterministically Synchronized Sequential Process (DSSP) are considered. Both nets (S4PR and DSSP) are formal subclasses of Petri Nets where net level techniques can be applied.In chapters 3 and 4, we will focus on the liveness of the DSSP systems resulting from the facet of communication between clinical pathways. These kinds of nets are composed by agents (modeling clinical pathways) cooperating in a distributed way by the asynchronous messaging passing through the buffers (modeling the communication channels). In particular two approaches have been proposed.The idea behind the first approach is to advance the buffer consumption to the first conflict transition in the agents. Considering healthcare systems modeled by a DSSP, this means that before a patient starts a clinical pathway, all required information must be available. Unfortunately, this pre-assignment method only works in some particular DSSP structures which are characterized. A more general approach (than buffer pre-assignment) for liveness enforcing in non-live DSSP is given in Chapter. 4. The approach is formalized on two levels: execution and control. The execution level uses the original DSSP structure while for the control level we compute a new net system called the control PN. This net system is obtained from the original DSSP and has a predefined type of structure. The control PN will evolve synchronously with the non-live DSSP ensuring that the deadlock states will not be reached. The states (marking) of the control PN will enable or disable some transitions in the original DSSP, while some transitions in the control PN should fire synchronously with some transitions of the original DSSP.The second part of the thesis deals with surgery scheduling of patients in a hospital department. The Operating Rooms (ORs) are one of the most expensive material resources in hospitals, being the bottleneck of surgical services. Moreover, the aging population together with the improvement in surgical techniques are producing an increase in the demand for surgeries. So, the optimal use of the ORs time is crucial inhealthcare service management. We focus on the planning and scheduling of patients in Spanish hospital departments considering its organizational structure particularities as well as the concerns and specifications of their doctors.In chapter 5, the scheduling of elective patients under ORs block booking is considered. The first criterion is to optimize the use of the OR, the second criterion is to prevent that the total available time in a block will be exceeded and the third criterion is to respect the preference order of the patient in the waiting list. Three different mathematical programming models for the scheduling of elective patients are proposed. These are combinatorial problems with high computational complexity, so three different heuristic solution methods are proposed and compared. The results show that a Mixed Integer Linear Programming (MILP) problem solved by Receding Horizon Strategy (RHS)obtains better scheduling in lowest time.Doctors using the MILP problem must fix an appropriate occupation rate for optimizing the use of the ORs but without exceeding the available time. This has two main problems: i) inexperienced doctors could find difficult to fix an appropriate occupation rate, and ii) the uncertain in the surgery durations (large standard deviation) could results in scheduling with an over/under utilization. In order to overcome these problems, a New Mixed-Integer Quadratic Constrained Programming (N-MIQCP) model is proposed. Considering some probabilistic concepts, quadratic constraints are included in N-MIQCP model to prevent the scheduling of blocks with a high risk of exceeding the available time. Two heuristic methods for solving the N-MIQCP problem are proposed and compared with other chance-constrained approaches in bibliography. The results conclude that the best schedulings are achieved using our Specific Heuristic Algorithm (SHA) due to similar occupation rates than using other approaches are obtained but our SHA respects much more the order of the patients in the waiting list.In chapter 6, a three steps approach is proposed for the combined scheduling of elective and urgent patients. In the first step, the elective patients are scheduled for a target Elective Surgery Time (EST) in the ORs, trying to respect the order of the patients on the waiting list. In the second one, the urgent patients are scheduled in the remaining time ensuring that an urgent patient does not wait more than 48 hours. Finally, in the third step, the surgeries assigned to each OR (elective and urgent) are sequenced in such a way that the maximum time that an emergency patient should wait is minimized. Considering realistic data, different policies of time reserved in the ORs for elective and urgent patients are evaluated. The results show that all ORs must be used to perform elective and urgent surgeries instead of reserving some ORs exclusively for one type of patient.Finally, in chapter 7 a software solution for surgery service management is given. A Decision Support System for elective surgery scheduling and a software tool called CIPLAN are proposed. The DSS use as core the SHA for the scheduling of elective patients, but it has other features related to the management of a surgery department. A software tool called CIPLAN which is based on the DSS is explained. The software tool has a friendly interface which has been developed in collaboration with doctors in the “Lozano Blesa” Hospital in Zaragoza. A real case study comparing the scheduling using the manual method with the scheduling obtained by using CIPLAN is discussed. The results show that 128.000 euros per year could be saved using CIPLAN in the mentioned hospital. Moreover, the use of the tool allows doctors to reduce the time spent in scheduling to use it medical tasks.<br /

    A Lotka-Volterra symbiotic model with cross-diffusion

    Get PDF
    The main goal of this paper is to study the existence and non-existence of coexistence states for a Lotka-Volterra symbiotic model with cross-diffusion. We use mainly bifurcation methods and a priori bounds to give sufficient conditions in terms of the data of the problem for the existence of positive solutions. We also analyze the profiles of the positive solutions when the cross-diffusion parameter goes to infinity.Ministerio de Educación y CienciaConselho Nacional de Desenvolvimento Científico e Tecnológic

    Factors Used to Make Appropriate Decisions in Youth Categories in Volleyball

    Get PDF
    Acknowledgments: This article will be part of the Doctoral Thesis titled: “Study of cognitive skills in volleyball players in Spain and Brazil”, by Manuel Conejero Suárez, at the University of Extremadura. This work was conducted with thanks to the Fernando Valhondo Calaff Foundation for the contribution of predoctoral contracts to young researchers.The study aim was to examine the associations between the category of play and the factors athletes use to make appropriate decisions. We observed 6567 game actions performed by 144 athletes. All game actions involved appropriate decisions. The study variables were factors on which appropriate decision-making is based (for five game actions in volleyball: serve, reception, setting, attack, block) and game category (Under-14, Under-16, Under-19). Our analysis—using contingency tables, the Chi-square test, and Cramer’s V—revealed a significant association between the two variables across the five actions. In the U-14 category, and sometimes in the U-16 category, it was more frequent than the expected random frequency that appropriate decisions were of low tactical complexity, focused on the performance of the skill, with an attentional focus on close elements, of low risk, and with actions of reduced difficulty and precision. For the U-19 category, it was more frequent than the expected random frequency that decisions were of greater tactical complexity, with an attentional focus on the opposing team, considering more relevant stimuli, with greater risk, and with greater time pressure. There is, therefore, a need for coaches to understand the decision-making skills of athletes from early on, as this will allow them to develop tasks and apply cognitive strategies that are adapted to the level of the athlete and that can ultimately improve decision-making further.Catedra del Real Madrid-European University 2017/RM02Consejeria de Economia e Infraectructuras de la Junta de Extremadura (Spain) through the European Regional Development fund: A way to make Europe GR1812

    Fluidization of Petri nets to improve the analysis of Discrete Event Systems

    Get PDF
    Las Redes de Petri (RdP) son un formalismo ampliamente aceptado para el modelado y análisis de Sistemas de Eventos Discretos (SED). Por ejemplo sistemas de manufactura, de logística, de tráfico, redes informáticas, servicios web, redes de comunicación, procesos bioquímicos, etc. Como otros formalismos, las redes de Petri sufren del problema de la ¿explosión de estados¿, en el cual el número de estados crece explosivamente respecto de la carga del sistema, haciendo intratables algunas técnicas de análisis basadas en la enumeración de estados. La fluidificación de las redes de Petri trata de superar este problema, pasando de las RdP discretas (en las que los disparos de las transiciones y los marcados de los lugares son cantidades enteras no negativas) a las RdP continuas (en las que los disparos de las transiciones, y por lo tanto los marcados se definen en los reales). Las RdP continuas disponen de técnicas de análisis más eficientes que las discretas. Sin embargo, como toda relajación, la fluidificación supone el detrimento de la fidelidad, dando lugar a la pérdida de propiedades cualitativas o cuantitativas de la red de Petri original. El objetivo principal de esta tesis es mejorar el proceso de fluidificación de las RdP, obteniendo un formalismo continuo (o al menos parcialmente) que evite el problema de la explosión de estados, mientras aproxime adecuadamente la RdP discreta. Además, esta tesis considera no solo el proceso de fluidificación sino también el formalismo de las RdP continuas en sí mismo, estudiando la complejidad computacional de comprobar algunas propiedades. En primer lugar, se establecen las diferencias que aparecen entre las RdP discretas y continuas, y se proponen algunas transformaciones sobre la red discreta que mejorarán la red continua resultante. En segundo lugar, se examina el proceso de fluidificación de las RdP autónomas (i.e., sin ninguna interpretación temporal), y se establecen ciertas condiciones bajo las cuales la RdP continua preserva determinadas propiedades cualitativas de la RdP discreta: limitación, ausencia de bloqueos, vivacidad, etc. En tercer lugar, se contribuye al estudio de la decidibilidad y la complejidad computacional de algunas propiedades comunes de la RdP continua autónoma. En cuarto lugar, se considera el proceso de fluidificación de las RdP temporizadas. Se proponen algunas técnicas para preservar ciertas propiedades cuantitativas de las RdP discretas estocásticas por las RdP continuas temporizadas. Por último, se propone un nuevo formalismo, en el cual el disparo de las transiciones se adapta a la carga del sistema, combinando disparos discretos y continuos, dando lugar a las Redes de Petri híbridas adaptativas. Las RdP híbridas adaptativas suponen un marco conceptual para la fluidificación parcial o total de las Redes de Petri, que engloba a las redes de Petri discretas, continuas e híbridas. En general, permite preservar propiedades de la RdP original, evitando el problema de la explosión de estados

    Redes de Petri híbridas adaptativas : alcanzabilidad y ausencia de bloqueos

    Get PDF
    Las redes de Petri (RdP) son un paradigma formal ampliamente aceptado para el modelado de sistemas de eventos discretos. No obstante, con poblaciones de gran tamaño, aparece el problema de la explosión de estados (crecimiento exponencial del tamaño del conjunto de estados alcanzables). Una manera de paliar este problema consiste en fluidificar el formalismo y considerar redes de Petri continuas, que permiten abordar de manera eficiente el estudio de los sistemas mediante técnicas lineales de análisis. Sin embargo, las RdP continuas no siempre preservan sus propiedades, como por ejemplo la ausencia de bloqueos. En este Trabajo se introduce, formaliza y estudia un formalismo nuevo, denominado redes de Petri híbridas adaptativas (HAPN), que combina comportamiento continuo y discreto: El comportamiento de las transiciones de la red adaptativa es variable: una transición se comporta como continua si su carga de trabajo supera un umbral establecido inicialmente, en caso contrario se comporta como discreta. Estas redes pueden aproximar mejor las redes discretas, mientras que cuando las poblaciones son elevadas el comportamiento es continuo y las técnicas lineales son aplicables, evitando el problema de la explosión de estados. De esta manera, las HAPN constituyen un marco conceptual muy general que incluye a las redes de Petri discretas,continuas e híbridas. En este trabajo, se ha definido formalmente el formalismo de redes de Petri adaptativas. A continuación, se ha caracterizado el conjunto de marcados alcanzables de las redes de Petri adaptativas, así como se compara con el de las RdP discretas. Por ultimo, se ha estudiado la propiedad de ausencia de bloqueos: se trata de determinar si la red adaptativa preserva la ausencia de bloqueos de la red discreta con misma estructura y marcado inicial

    Desarrollo de un algoritmo basado en la preasignación de buffers que permita la vivacidad de sistemas de red DSSP inicialmente no vivos

    Get PDF
    Deterministically Synchronized Sequential Process (DSSP) definen una subclase de sistemas descritos con Redes de Petri (RdP). Están compuestos por un conjunto de máquinas de estado (también llamadas agentes) que cooperan a través del paso asíncrono de mensajes. La estructura modular de las redes DSSP permite obtener fuertes resultados analíticos (por ejemplo, el teorema de rango proporciona condiciones necesarias y suficientes para asegurar vivacidad estructural). Este trabajo considera el problema de forzar estructuras vivas a partir de otras de tipo DSSP estructuralmente no vivas. Para algunas estructuras particulares de tipo DSSP en las cuales el teorema de rango demuestra que son estructuralmente no vivas, se provee un algoritmo basado en la preasignación de los buffers que la asegura. El algoritmo ha sido aplicado a DSSP que modelan sistemas reales de producción y salud. Se ha observado que en los sistemas de producción (lógica de consumo/producción de items) el algoritmo además de convertir la red viva, mantiene el significado físico del modelo. Por contra, en los sistemas de salud (lógica de producción/consumo de mensajes) al aplicar el algoritmo la red resultante es viva pero puede perderse el propósito del modelo

    Design and validation of an observation instrument to assess decision making in the reception action of volleyball

    Get PDF
    El objetivo del presente estudio fue diseñar y validar un instrumento de observación para medir la toma de decisiones en la acción de recepción en jugadores de voleibol en etapas de formación. El instrumento elaborado es una adaptación del GPAI (Game Performance Assessment Instrument) creado por Oslin, Mitchell, y Griffin (1998) en la dimensión toma de decisiones, en el que se establecen una serie de criterios que permiten valorar la toma de decisiones (apropiada o inapropiada) en la acción de recepción. El proceso de diseño y validación se realizó en seis fases: a) revisión bibliográfica; b) elaboración del instrumento por especialistas de voleibol; c) validez del instrumento a través de la técnica de jueces expertos; d) cálculo del coeficiente V de Aiken (Aiken, 1985); e) cálculo de los intervalos de confianza; f) fiabilidad en la observación del instrumento. Los resultados obtenidos muestran que el instrumento permite una observación valida y fiable de la toma de decisiones de los jugadores en la acción de recepción de voleibol. Este instrumento puede ser empleado tanto en la investigación como durante el proceso de entrenamiento deportivo para evaluar la toma de decisiones de los deportistas.The main aim of study was to design and validate an observational instrument to measure decision-making in the reception action of volleyball players in formative stages. The instrument is an adaptation of the GPAI (Game Performance Assessment Instrument) by Oslin, Mitchell, & Griffin (1998), for the dimension decisionmaking, in which a number of criterion to evaluate the decision-making (appropriate or inappropriate) for reception are included. The design and validation process was conducted in six phases: a) literature review; b) development of instrument carried out by volleyball specialists; c) validity of the instrument through expert judges; d) calculation of the Aiken’s V coefficient (Aiken, 1985); e) calculating confidence intervals; f) reliability of the observation using the instrument. The results showed that the instrument allowed a valid and reliable observation of the decision-making in the reception action of player’s volleyball in formative stages. The instrument can be applied, both in research and during sports training, to evaluate athlete’s decision making.peerReviewe
    corecore